VELIPARIB WITH TEMOZOLOMIDE IN PATIENTS WITH HEMATOLOGIC MALIGNANCIES: IS THERE A NEED TO ADJUST DOSE?

Renu Singh¹, Mathangi GopalaKrishnan¹, Jan H. Beumer², Michelle A. Rudek², Jacqueline M. Greer³, Brian F. Kiesel³, Judy Karpe³, Ivana Gojo³, Jogarao Gobburu¹

¹University of Maryland, Baltimore, MD; ²University of Pittsburgh Cancer Institute, Pittsburgh, PA; ³The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD

Background & Objective

• Veliparib (ABT-888) is a potent, orally bioavailable poly(ADP-ribose) polymerase (PARP) small molecule inhibitor that is currently in development for the treatment of non-hematologic and hematologic malignancies.

• PARP is a nuclear enzyme that recognizes DNA damage and facilitates DNA repair. PARP inhibitors are expected to sensitize cancer cells to the effects of DNA-damaging agents including alkylators such as temozolomide (TMZ) and radiation therapy.

• Both ABT-888 and TMZ are majorly eliminated by renal route.

• The objective of this analysis was to describe the population pharmacokinetics (PK) of ABT-888 and evaluate the impact of TMZ co-administration on the PK parameters of patients with hematologic malignances.

Methods

• The analysis dataset included 580 ABT-888 concentration values from 37 patients with hematologic malignancies from phase I study.

• Exploratory analysis and non-compartmental analysis (NCA) were conducted using Rstudio and Phoenix WinNonlin.

• Population PK modeling was performed using Phoenix NLME 1.3. One and two compartment PK models were evaluated.

• Following absorption models were evaluated.
 - Method 1: First order absorption
 - Method 2: First order absorption with lag time (tlag)
 - Method 3: Zero order absorption
 - Method 4: Zero order absorption with first order and lag time and relative bioavailability (RelF)

• Goodness of fit plots and likelihood ratio test was used for comparison of nested models.

• Co-administration with TMZ were evaluated as interoccasion variability (IOV) on CL. Trends of body surface area, age, weight, height, race, sex, creatinine clearance and dose were evaluated.

Table 1. Exposure estimates for ABT-888 from NCA.

<table>
<thead>
<tr>
<th>Variable</th>
<th>20 mg</th>
<th>80 mg</th>
<th>120 mg</th>
<th>150 mg</th>
<th>250 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT-888</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
</tr>
<tr>
<td>AUC(0-24h)</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
</tr>
<tr>
<td>CL/F</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
</tr>
<tr>
<td>Vd/F</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
<td>888</td>
</tr>
</tbody>
</table>

Results

• CL/F and Vd/F derived from the base model with IOV were 15 L/h and 191 L, respectively (Table 2).

• Zero order absorption followed by first order absorption combined with a lag period and relative bioavailability described the absorption phase well; showing significant improvement over other models (Figure 3).

• CL/F and Vd/F derived from the base model with IOV were 15 L/h and 191 L, respectively.

Figure 2. Dose-exposure trend for ABT-888 with and without TMZ.

Conclusions

• NCA analysis revealed linear dose-exposure trend for ABT-888 (Figure 2).

• Summary of patient demographics in the Phase I clinical trial are shown in Table 2.

• A one-compartment model with first-order elimination adequately described ABT-888 PK as shown by goodness-of-fit plots (Figure 4 and 6). Proportional model was used for residual errors and exponential model was used for between subject variability (BSV).

• Zero order absorption followed by first order absorption combined with a lag period and relative bioavailability described the absorption phase well; showing significant improvement over other models (Figure 3).

• CL/F and Vd/F derived from the base model with IOV were 15 L/h and 191 L, respectively.

• CL values for ABT-888 did not change in the presence of TMZ administration (Figure 5).

• Dosage adjustment of ABT-888 is not required when TMZ is co-administered in patients with hematologic malignancies.

• The CL/F and Vd/F values in patients with hematologic malignancies were similar to those reported in literature for non-hematologic malignancies.

• Future work will focus on further refinement of the population PK model and validation of the model.

References

Results/Discussion

Figure 3. Individual predicted and observed concentrations on time after dose using model 1 (A) and model 4 (B) for absorption. Filled circles and solid lines represent observed and predicted concentrations, respectively.

Figure 4. Goodness-of-fit plots for one-compartment PK base model.

Figure 5. Box plot showing eta CL of ABT-888 with and without TMZ.

Figure 6. Schematic of final one-compartment PK model.